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ABSTRACT 

The question of convergence of  t h r e e  f i n i t e  element algorithms fo r  

the modelling of acoust ic  transmission i n  ducts  carrying a nonuniform 

mean flow is addressed. The details  of each algorithm a r e  s t a t e d  and 

example ca lcu la t ions  i n  uniform and nonuniform ducts a r e  made and assessed 

for accuracy and convergence. 

The algorithm based on the  assumption of i r r o t a t i o n a l i t y  is found t o  

be highly convergent. This algorithm is the  one used in  current  turbo-fan 

inlet acous t ic  r ad ia t ion  codes. A t heo re t i ca l  ana lys i s  indicat ing con- 

vergence is supported by example calculat ions.  

Two add i t iona l  algorithms which do not  requi re  i r r o t a t i o n a l i t y  are 

found t o  be less convergent, and perhaps not  convergent a t  a l l  f o r  c e r t a i n  

severely sheared ve loc i ty  prof i les .  No t heo re t i ca l  convergence c r i t e r i a  

can present ly  be establ ished f o r  these algorithms and convergence d i f f i c u l -  

t i es  are shown here by example. Included in t h i s  class of algorithms is 

the duct ana lys i s  program ADAM which is known t o  display apparently non- 

convergent so lu t ions  i n  c e r t a i n  cases. 
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I. INTRODUCTION 

It has become apparent t h a t  the severa l  f i n i t e  element approximations 

used in t h e  modelling of acous t ic  propagation i n  nonuniform ducts  do not  

possess cons i s t en t  convergence cha rac t e r i s t i c s .  I n  p a r t i c u l a r ,  experience 

with approximations based on an assumption of i r r o t a t i o n a l  mean flow and 

acous t i c  per turba t ion  ind ica t e s  t h a t ,  a t  least over the  f a i r l y  broad 

parametric range so f a r  inves t iga ted ,  convergence characteristics are 

good. On t h e  o ther  hand, when the  i r r o t a t i o n a l  assumption is not  imposed, 

n e c e s s i t a t i n g  a f i n i t e  element approximation based on t h e  primitive form 

of t h e  acous t ic  equat ions (in terms of pressure  and two o r  t h ree  v e l o c i t y  

components), se r ious  convergence problems can occur, p a r t i c u l a r l y  when 

t h e  mean flow has s teep  gradien ts ,  representative of t yp ica l  boundary 

layers .  It is t h e  purpose of t h i s  study t o  attempt t o  i s o l a t e  with 

simple examples t h e  na tu re  of t h e  d i f fe rence  i n  convergence c h a r a c t e r i s t i c s  

of the  f i n i t e  element algorithms. 

In  modelling acous t ic  propagation in ducts  t h e  following assumptions 

are o f t en  made: 

1. The f l u i d  is an i nv i sc id  idea l  gas. 

2 .  The l inea r i zed  equat ions of motion accura te ly  descr ibe  
the  propagation of t h e  acoust ic  dis turbances.  

3. The motion of t he  f l u i d  is i r r o t a t i o n a l .  

For t h e  a i r c r a f t  engine i n l e t  problem assumptions 1 and 2 imply assumption 

3 s ince,  f o r  t h i s  problem, the  f l u i d  is i n i t i a l l y  i r r o t a t i o n a l .  By t he  

Helmholtz Vor t i c i ty  Theorem, the f l u i d  remains i r r o t a t i o n a l .  However, 

it is known t h a t  near  sur faces  assumption 1 breaks down, s ince  the  

e f f e c t s  of t he  f l u i d  v i s c o s i t y  a r e  then s i g n i f i c a n t .  i n  order t o  com- 

pensate f o r  t h i s  deviat ion,  without giving up too many of t he  s impl i f ica-  

t i o n s  afforded by assumptions 1-3 t h e  following could be assumed: 
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4. The motion of small disturbances is w e l l  described by t h e  
l i nea r i zed  inv i sc id  equations with a viscous mean flow 
subs t i t u t ed  in place  of t h e  inv isc id  mean flow. I n  o the r  
words, the c o e f f i c i e n t s  of the  linear equations are a l t e r e d  
t o  represent  a viscous mean flow. 

Assumption 4 has no physical,  mathematical o r  intuit ive j u s t i f i c a t i o n ,  

and f o r  t h i s  reason it is general ly  argued t h a t  it is  no t  appropriate .  

However, w e  do make some ca l cu la t ions  with it here t o  demonstrate con- 

vergence. 

Several numerical algorithms have been developed t o  model t h e  duct  

acous t ics  problem, (1-141, probably the most v e r s a t i l e  of which are t h e  

f i n i t e  element methods (FEM's). However, it has been reported [7] t h a t  

i n  certain instances some algorithms do no t  converge. I n  t h i s  document, 

w e  consider  three f i n i t e  element algorithms used t o  model duct  acous t i c s  

problems; one based on a v e l o c i t y  po ten t i a l  formulation and the  o the r  

two based upon the  primitive equations. 

using the  ve loc i ty  p o t e n t i a l  w i l l  converge f o r  a very broad class of mean 

flows and geometries. The o tke r  t w o  algorithms are not  ammenable t o  such 

It is shown t h a t  t h e  algorithm 

ana lys is ,  so numerical experiments were conducted in order  t o  estimate 

w h a t  problems may be solved with these algorithms and t o  compare t h e  

algorithms. 

Fix, Nicolaides,  and Gunzburger [11-13] consider a least  squares 

algorithm t o  so lve  the  acous t ics  problem using t h e  pr imi t ive  equations.  

They prove t h a t  f o r  t h e  no flow case t h e i r  algorithm w i l l  converge optimally 

when a s p e c i a l  class of f i n i t e  element g r i d s  is used. 

squares algorithm w a s  proposed by Astley and Eversman [31. However, they 

reported t h a t  S e t t e r  r e s u l t s  were obtained with a classical Galerkin type 

approximation. 

A similar least 



11. ACOUSTIC EQUATIONS AND BOUNDARY CONDITIONS 

In t h i s  s ec t ion  we consider the acoust ic  equat ions and boundary 

condi t ions f o r  a duct ,  Q. 

Assumptions 1 and 2, o r  4 lead t o  the  following equations f o r  

t he  acous t ic  ve loc i ty  and pressure i n  s2. 

i w  1 
- p  + V.(pu + 2 p  U) 5 

- 0 
5 -  

C 
2 

C 

iwu + (U.V)u + (u.V)U + V(n> f 0 
5 . . , ”  5 5 - p  

where 

p ,u  are the  acous t ic  pressure and ve loc i ty  

p ,c ,U are the  mean flow dens i ty ,  speed of sound and ve loc i ty ,  respec t ive ly .  

w is the frequency. 

- 
5 

I f  assumption 1 is used the mean flow (p,c,U) should s a t i s f y  
5 

V.(PU) = 0 

(U.V)U + - V(7T) = 0 

5 5  

1 
5 - P -  

where 

y and IC are constants  and y = c - C 
P v’ 

When assumption 4 is used the mean flow should s a t i s f y  the viscous 

compressible equations. However, these a r e  d i f f i c u l t  t o  solve so of t en  a 

boundary layer  cor rec t ion  t o  an inv isc id  flow is  used as a fu r the r  approxi- 

mation/assump t ion .  

1. 



I f  t h e  i r r o t a t i o n a l  assunption is used equations (2.1) reduce t o  

i o  1 - +  V.(p V$ + 2 p  U) = 0 2 -  -. - 
C C 

i - p + io$ + U.V$ = 0 
P - . -  

w h e r e  

$ is the  acous t ic  ve loc i ty  po ten t i a l .  

I f  assumption 1 is used the mean flow w i l l  s a t i s f y ,  

1 (2 4 )  

where 

@ is the mean flow ve loc i ty  p o t e n t i a l  

p is the (constant)  s tagnat ion  densi ty .  
A 

h 

When assumption 4 is used (p,c,U) represents  t he  r o t a t i o n a l  mean 
5 

flow. 

BOUNDARY CONDITIONS 

Since we are in t e re s t ed  i n  the  duct problem w e  consider t h e  domains, Q, 

t o  be of a s p e c i f i c  form. W e  assume (see f igu re  l ) ,  
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w h e r e  

= ((0,~): 0 < Y < dl)  

= l e f t  hand end of the  duct 

= {(R,y): 0 < y < d21 

= r i g h t  hand end of the duct  

r2 

r3 = lower duct w a l l  

r4 = upper duct w a l l  

d2 are the  duct widths a t  each end and R is the duct  length. dl 

We assume that the duct w a l l s  are "hard". This r equ i r e s  t h a t  

u.n = 0 and U.n = 0 .., c 

o r  

a@ 2 a 0  a n d - = O  an an 

w h e r e  n is the u n i t  outward normal t o  the duct.  

It is i n t e r e s t i n g  t o  note tha t  when assumption 4 is  used t h e  mean 

flow w i l l  s a t i s f y  U = 0 on the w a l l s  while the  t angen t i a l  acous t ic  ve loc i ty  

may o r  may no t  vanish. 

5 -  

It w i l l  be assumed that t h e  duct terminates  with semi- inf ini te  

uniform ducts  which car ry  a uniform plug flow. I n  t h i s  s i t u a t i o n ,  the 

so lu t ion  i n  the duc t ,  Q, may be  matched on t o  an a n a l y t i c a l  so lu t ion  in  the  

semi- inf ini te  ducts.  This so lu t ion ,  for the  i r r o t a t i o n a l  problem, is given by 
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where 

d is the duct width 

{a  1 ,  {a-1 are a r b i t r a r y  constants + 
n U 

M = [ 11 /c = Mach. number of the  mean flow 

w 
C 

k = -  = s p a t i a l  wave number 

2 n r  2 4 
6 = i l k 2  - (1-M 1 
n 

aD 

= c  w n=O 

When r o t a t i o n a l  dis turbances are permitted the  uniform duct so lu t ion  is 

n r  + + 
d cos (-- Y) 

n r  
Cos(- Y) d 

n 

w h e r e  
P 

- +  0 {an) ,  {a:> and { a  n 1 a r e  amplitude c o e f f i c i e n t s  

A' are as i n  equation (2.7) n 

A L - -  i k  
n M 

The last c o l - m  of the coe f f i c i sn t  matrtx intrsduces the rctaticmal. p a r t  

of t he  disturbance. 

replaced by [b] and the  an replaced by bn. 

Similar  representat ions are used a t  x = II, with [An] 
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+ 
n n T h e  q u a n t i t i e s  {a 1 and {a'} represent  wave amplitudes of waves moving 

i n  t h e  p o s i t i v e  and negative d i rec t ions  respec t ive ly .  

amplitudes of hydrodynamic waves that move with t h e  m e a n  flow and do not  

exist if t h e  flow is i r r o t a t i o n a l .  

t h e  so lu t ion  within the  duct t o  match t h e  above a n a l y t i c a l  solut ion.  

In p a r t i c u l a r  w e  r equ i r e  

0 The  {an} are the  

At t h e  duct terminat ions w e  r equ i r e  

o r ,  when p o t e n t i a l  flow is not  enforced 

n + n - 
n 

6 6 A 00 1 
a (PU + 2 P u>.nl = c r  

5 C '(0,~) n30 c ( i k  + i+M)%-c(ik + X i M )  
n 

(2.10) 

n DM nTr 0 n r  6 
b+ - b i  + - k (-)b d2 n 1 r2 COS(- Y) 

d2 

n 00 6 

n c (ik + X i M )  = E [  
n=0 c ( i k  + X3) 

Where in  equations (2.10) t h e  subscr ip ts  I'l and l'2 i nd ica t e  t h a t  t h e  quan- 

tities appearing w i t h i n  t h e  brackets  a r e  t o  be evaluated on and r2 respec t ive ly .  

We spec i fy  the  waves incident  upon the duc t ,  51. This corresponds 

+ t o  specifying {a,}, {b i )  and {b:} i f  the  mean flow Mach number is negative 

0 (specify {an} i f  M > 0). 

I f  the duct terminations a r e  not i n  regions of uniform plug flow, 

no a n a l y t i c a l  so lu t ions  corresponding t o  equations (2.7) and (2.8) e x i s t .  
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Astley and Eversman [ 1 4 ]  proposed a method for generalising these modal 

boundary conditions. 

approach so only plug flows are considered here. 

However some technical problems ar ise  with t h i s  
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111. WEAK PROBLEMS 

In  t h i s  s ec t ion  we d i scuss  severa l  weak formulations used f o r  t h e  

modelling of t h e  duct problem. We first d iscuss  a formulation using 

an acous t i c  ve loc i ty  po ten t i a l .  The other  two weak formulations,  based upon 

the pr imat ive form of the equat ions,  are  those prrsued by Astley and 

Eversman [2-31 and Abrahamson [6-71 respect ively.  

1. Velocity P o t e n t i a l  Formulation 

In order  t o  incorporate  the modal boundary condi t ions of equation 

(2.9) i n t o  the problem it is  necessary t o  def ine  a space of sequences, S, 

which are square summable in a weighted sense. L e t  
00 

+ c lan12n < -1 
n= 1 aO s = {a: 

The modal amplitudes at t he  l e f t  and r igh t  hand ends of t h e  duct w i l l  be 

denoted by ( a  ,a-) and (b ,b-) respec t ive ly  and w i l l  be required t o  l i e  

in  S x S ( i . e .  a ES and a'ES, e tc . )  . The sequences of eigenvalues of 

the  ends of t he  duct are denoted by (A ,A'). I n  formulating the  weak 

problem w e  w i l l  need c e r t a i n  spaces. 

+ + 
+ 

+ 

F i r s t  recall t h a t  L2(Q) def ines  the  

linear space of equivalence classes of measurable funct ions g such t h a t  

In Igl < 

of funct ions in L (Q) whose f i r s t  d i s t r i b u t e d  de r iva t ives  a r e  a l s o  i n  L ($2). 

The weak problem may now be s ta ted .  

2 1 and t h a t  H (Q) def ines  t h e  linear space of equivalence c l a s s e s  

2 2 

- 2 Find ($,p,a ,b+) E H1(Q) x L (Q) x S x S 

such t h a t  

'1 
00 

c (bn + - b i )  6' J ~ o s ( E y )  = o 
d2 n 

nPO r 
+ P2 

(3.2a) 

' 2  
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OD 

2 +  n r  1 +  ( iv)  C n{-(bn + b i )  - 9 Cos(- y) + {- (ao + a i )  
n=l  d2 J r d2 d2 

'2  

(3.2d) 

+ In the statement of t h i s  weak problem (p,c,U) is the  mean flow, a and b- 

are presumed t o  be given and p l y  dl and p2, d2 a r e  the values  of the-mean 

flow dens i ty  and duct widths a t  t he  l e f t  and r i g h t  hand ends of the duct 

respec t ive ly .  

equation (2.7), evaluated a t  the l e f t  and r i g h t  hand ends of the duct  

-. 

2 The q u a n t i t i e s  6; and 6n are the  r a d i c a l s  defined i n  

respec t ive ly .  

It is shown i n  Appendix I t h a t  t h i s  weak problem is w e l l  posed undera 

physical ly  reasonable hypothesis on t h e  mean flow. 

W e  have chosen t o  solve fo r  the  pressure e x p l i c i t l y .  As an alter- 

na t ive  the  ve loc i ty  p o t e n t i a l  could be ca lcu la ted  i n i t i a l l y  by e l imina t ing  

t h e  pressure and then the  pressures  calculated subsequently. 

2. Astley Eversman Formulation 

The modeling of the Eodal boundary condi t ions (equations (2.9-2.10) 

is more involved when the  primative equations a r e  u t i l i z e d .  Astley and 

Eversman proposed the  following ideas  t o  accomplish t h i s .  
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1 1 2  For each (p,%), B H (Q) x H (Q) define six sequences 

0 b+, b-, b where 

b+ n 

b- n 

0 
bn 

2 1  -1 
= €Bnl  - 

d2 r2 

n r  :os(- y) 

n r  
dl 

cos(- Y) 
dl 

0 0  O = b o = O  for  n=1,2,3 with a 

1 1 1-' 

p c  ( i k  - + A i M )  Jr2 
1 - 
d2 I 

r2 

+ - 0  
a , a , a ,  

(3.3a) 

(3.3b) [:I 

W e  now f i x  some nota t ion  so that the space of so lu t ions  may be defined. 

For w = (p ,u) e H (Q) x H (n) 1 1 2  def ine - 
A+: H1(Q) x H1(Q)2 + Q2 

(3.4a) 

(3.4b) 

where a+ is defined i n  equation (3.3). S imi la r ly  w e  d i f i n e  A-, A', B+, 

B-, and B . 0 
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0 L e t  a+, b-, b be spec i f ied .  The funct ion spaces of Astley 

and Ebersman are: 

u = {w 8 H1(Sa) x H1(Sa)2: A+(w) = a+,B-(w) = b-, 

Bo(w) = bo} 

1 1 2  uo= {w € H (n) x H (a) : A+(w) = B-(w) = Bo(w) = 0) 

(3.6) 

(3.7) 

with the  weak problem becoming: 

'lM n r  a ~ l  (3.8a) 
+ 2 n - 00 

n 
an +T n a -  

n c (ik + X i M )  - c {  
n4l  c ( i k  + X'M) n 

-1 
+ - 'zM nn o 62 n 00 62 

b+ - - bn + y bn) 
n 

r2 c ( i k  + nM) 2 + n  c {  
n 4  c ( i k  + nM) 

' 2  

(3.8b) 

0 Here i t  is understood t h a t  a+, b- and b 

b = D (p ,u j ,  and a = A (p ,uj .  

are da ta  wi th  a- = A-(p,u), 

- ,+ 0 0 

1 4  



3. Abrahamson Weak Problem 

Abrahamson [6]  used the following weak problem for h i s  ADAM 

computer program. L e t  

vo =vnu 0’ 
then f ind (p ,u) B lf such that 

(3.10a) 

(3 .  lob) 
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I V .  FINITE ELEMENT APPROXIMATION OF THE WEAK PROBLEMS 

1. Velocity P o t e n t i a l  Formulation 

1 2 The funct ion spaces H (Q) and L ($2) from which 0 and p are chosen 

may be approximated by the  usual f i n i t e  element subspaces, M (Q) and TMil(Q). 

The supe r sc r ip t  is used t o  ind ica t e  the degree of inter-element cont inui ty  

0 
k 

(0 continuous, -1 discontinuous) and t h e  subsc r ip t  i nd ica t e s  t he  degree of 

polynomial used in the construct ion of each element. To approximate the 

sequences the following f i n i t e  dimensional subspaces are u t i l i z e d .  

The approximate weak problem is then; Find (@,p,a-,b+) e IM,(Q) 0 xIM;l(Q) x 
0 

SN x such t h a t  equations (3.2a-d) hold V ($.q,a,B) €lM,(Q) x 

lM-l(Q) x SN x s. 
Under c e r t a i n  technical assumptions i t  is shown i n  Appendix 1, that 

i f ,  

II > k-1 - ( i )  

1 
- h  ( i i )  N > - w h e r e  h is the maximum diameter of the  elements used 

i n  the  f i n i t e  element t r i angu la t ion ,  

then , 

k 
Ip - po I o  2 c2h (cl , c2 constants) 

where (@o,po) is the so lu t ion  and ( 4 , ~ )  is the approximate so lu t ion .  

In  other  words the f i n i t e  element scheme converges with an optimal rate 

i f  s u i t a b l e  ca re  is given t o  a required compat ib i l i ty  between the  approximation 

f o r  t h e  velocity potsntia?. and t h e  pissstire and boundary coefficients. 
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2. Astley-Eversman Algorithm 

It is not  immediately obvious how the  class of funct ions U 

discussed i n  sec t ion  111.2 may be approximated. Astley and Eversman 

[3]  proposed the following algorithm t o  generate (non-conforming) 

approximations. 

0 0 1 1 2  

subspaces as described i n  sec t ion  IV.l above. 

LetMk(R)  XI^(^)^ H (a) x H (L?) be the usual  f i n i t e  element 

On r l  the  trace of any 

element (u,p) € %(a) 0 x %(a) 0 2  may be wr i t t en  as - 

i-1 

i L '1 

I 
I where E:] correspond t o  the funct ion values  of [iJ a t  node i on r l  and i 
I i 

ai are the  in t e rpo la t ion  funct ions corresponding t o  node i on r l .  
nodal values  of (p,u) are then constrained t o  s a t i s f y ,  

The 

= !  J 
n 4  

I 

( 4 . 3 )  
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f o r  a l l  j = 1,2,  ... M. N represents  the number of modal ampl-itudes 

being used i n  the approximation, and [A,] is. the matrix defined i n  

equation (2.8). Equation ( 4 . 4 )  gives a r e l a t ionsh ip  between the modal 

amplitudes and the nodal values on the  boundary f o r  the  approximation. 

This r e l a t i o n  may be wr i t t en  

!o = [To] A .., (4.5a) 

w h e r e  U 

of nodal amplitudes (an, an, an, n = 1,2,  ... N). 
corresponds t o  the  nodal values of (p,u) on rl and A the  vector  

An analogous expression 

-0 .., .., 
+ - 0  

f o r  the nodal values  on r2 may be wr i t t en  as 

0 If a t y p i c a l  element of Y,(Q) x 4(Ql2 is described by 

VO 

!a. 

U 
.., 

where U 

o ther  nodal values  a t y p i c a l  element of the  space used t o  approximate 

U would described by 

and lJa are the nodal values  on r l  and r2 and U contains  the -0 - 

= [ @ I  
' T  

.., 
T ] E1 -0 

-2 

(4.6) 

(4.7) 

where I is an i d e n t i t y  matrix and [To], [TQl  a r e  as i n  equation (4.5). The 

cons t r a in t s  on a , b-, e tc .can now eas i ly  be implemented using penal i sa t ion .  

Astley and Eversman [7] descr ibe the implementation of t h i s  algorithm i n  

d e t a i l .  

+ 
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V. RESULTS 

1. Uniform Duct Resul ts  

The  a n a l y t i c a l  so lu t ion  t o  the  acoust ic  problem f o r  a uniform duct 

car ry ing  a uniform mean flow w a s  given i n  equations (2.7-2.8). T h i s  provides 

a test case  which can be used t o  estimate how w e l l  the  f i n i t e  element approx- 

b a t i o n s  do approximate the solut ion.  

norm of the e r r o r  in pressure ,  defined by, 

2 Throughout this sec t ion  w e  use the L 

w h e r e  

p = a n a l y t i c a l  s o l u t i o n  

I 'h = f i n i t e  element so lu t ion ,  

t o  estimate the  e r r o r  i n  the  so lu t ion .  Standard r e s u l t s  [ 1 5 ]  show t h a t  a ~ 

f i n i t e  element approximation using polynomials of degree k would have an 

optimal rate of convergence i n  the  L norm of order  k+l, i.e. 2 

where 

h = diameter of largest element, 

1 I i f  the  so lu t ion  sought w a s  s u f f i c i e n t l y  smooth. F ix ,  Nicolaides,  and 

Gunzburger [ l l ]  obtained optimal convergence f o r  the no flow case using 

I t h e i r  least squares scheme with l i n e a r  t r i a n g l e s  (k=l) on a " c r i s s  cross" 

I gr id  ( i . e .  a gr id  s a t i s f y i n g  the g r id  decomposition property [ l o ] ) .  
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P o t e n t i a l  Flow code: 

W e  consider the p o t e n t i a l  flow code separa te ly  from the  other  

two algorithms f o r  two reasons. 

i n  t he  Appendfx that ind ica t e  that the f i n i t e  element scheme should 

converge optimally when quadra t ic  elements are used f o r  the  ve loc i ty  

p o t e n t i a l  and discontinuous l i n e a r  elements are used f o r  the pressure.  

Secondly, the  results ind ica t e  that extremely 'rough' mean flows are 

admissible since no mean flow der iva t ives  e n t e r  t h i s  problem. 

F i r s t ,  we have the  a n a l y t i c a l  r e s u l t s  

When the f i n i t e  element approximation described i n  equat ions (3.2) 

w a s  used t o  solve f o r  the a n a l y t i c a l  so lu t ion  given i n  equation (2.7) 

optimal convergence of the  pressure was observed i n  a l l  cases  t r i e d .  

This w a s  expected since the ana ly t i ca l  so lu t ion  has i n f i n i t e l y  many 

der iva t ives .  

two of the  so lu t ions  given i n  equation (2.7) with d i f f e r e n t  mean flows. 

A more i n t e r e s t i n g  example may be constructed by combining 

(See Figure 2) 

m a n  flow and the acous t ic  pressure,  the ve loc i ty  p o t e n t i a l  being 

continuous. 

w r i t t e n  as 

This  r e s u l t s  i n  a problem with a d i scon t inu i ty  i n  the 

T h e  compat ibi l i ty  condition a t  the  i n t e r f a c e  may be 

We consider the  r e s u l t s  using the  following a s .da t a :  

+ w = 1.0, a i  = 1.0 an = 0 ,  n=1,2 ,..., R-1.0, d = 0.5 

c = 1.0, bo = 0 n = 0,1,2 ,.... 

1 .o i f  x < 0.5 u =  -0.25 e 
-X 

x < 0.5 - x ' 0.5 -0.5 e -X - 0.5 i f  x > 0.5 - 
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+ The choice of a plane wave inc ident  at x=O (ao = I )  is presented so 

that the  jump i n  pressure a t  the in t e r f ace  can e a s i l y  be p lo t t ed .  

Calculat ions were made with non plane waves and the r e s u l t s  were 

e s s e n t i a l l y  the  same. 

Figure 3 shows the real p a r t  of the  pressure p l o t t e d  near x 4 . 5  

that w a s  ca lcu la ted  using a mesh with 10 uniformly spaced elements across  

the  duct and 20 elements along the duct (a  10 x 20 mesh). This so lu t ion  

almost exac t ly  overlays the a n a l y t i c a l  so lu t ion .  

the jump is captured without any of the c h a r a c t e r i s t i c  wiggles associated 

with i l l -posed problems. 

pressures away from the d i scon t inu i ty  could be discontinuous,  the  so lu t ion  

has almost no jumps  at  the  o ther  element i n t e r f aces .  The 10 x 20 mesh 

used f o r  f i g u r e  3 has element boundaries along the i n t e r f a c e  x 4 . 5 ,  so 

the  jump can be captured exact ly .  

the d i scon t inu i ty  can no longer be captured exac t ly  s ince  the jump i n  

pressure does not  coincide with element boundaries. The so lu t ion  fo r  

the  real p a r t  of the  pressure near x 4 . 5  obtained with a 10 x 2 1  mesh 

is given i n  f igu re  4. 

i n  the  element centered a t  x 4 . 5  simply s t r a d l e s  the jump and otherwise 

the pressure is  s t i l l  very accurate.  

with continuous pressures  t o  solve t h i s  problem. This w a s  done f o r  both 

the 10 x 20 and 10 x 21 element meshes and the pressures a r e  p l o t t e d  i n  

f igu re  5 and 6 .  The e r r o r  associated with the d iscont inui ty  appears t o  

spread ever a t  least t h r e e  eleiiients for each of t hese  so lx t ions .  

A p l o t  of the  L e r r o r  i n  the pressure versus  mesh s i z e  (h) is given 

It can be seen t h a t  

It is i n t e r e s t i n g  t o  note  t h a t  w h i l e  the  

I f  a 10 x 2 1  element mesh is  used 

It can be seen t h a t  i n  t h i s  s i t u a t i o n  the pressure 

It is  poss ib le  t o  use elements 

I 

2 

i n  f igu re  7. When discontinuous elements were used t h a t  had boundaries 

on x 4 . 5  the convergence rate is optimal (slope = 2 ) .  The o ther  two l i n e s  
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with s lope  = 1 are the convergence curves f o r  the  case where the i n t e r -  

face x 4 . 5  always b i sec t e s  an element so t h a t  the  jump couldn ' t  be 

ca l cu la t ed  exac t ly  and the case where the pressures  were continuous. 

Since t h i s  problem does not  have a smooth so lu t ion  the approximation 

results given i n  the  Appendix do not  apply and t h i s  explains  why even the  

discontinous pressures  may give sub-optimal convergence rates. 

ASTLEY AND ABRAHAMSON CODES: 

The weak problems presented in  equations (3.8) and (3.10) both 

involve de r iva t ives  of the mean flow so discontinuous mean flows, l i k e  

the  one discussed f o r  the p o t e n t i a l  flow code, can not be considered. 

In order  t o  inves t iga t e  the behavior of the  two algorithms, a uniform 

duct case w a s  considered; the so lu t ion  being given i n  equation (2.8). 

Since the  so lu t ions  were a l l  continuous it  is poss ib le  t o  c a l c u l a t e  the 

H1 e r r o r  of the  so lu t ion  defined by: 

2 

where 

p = analyt  cal  so lu t ion  

ph= f i n i t e  element so lu t ion  

Standard r e s u l t s  show t h a t  i f  the so lu t ion  sought is smooth, and 

polynomials of degree k are used to construct t h e  f i n i t e  element mesh 

approximating the so lu t ion ,  the optimal H rate of convergence is k, i.e. 1 

1 Error ca l cu la t ions  were made using both the  L2 and H norms. 
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The following da ta  are used f o r  the uniform duct problems considered. 

w = 1.0, R = 1.0, d * 0.5 

U = - 0 . 5  e p = 1.0, c 1.0 
* -X 

+ - + o  a. = bo = 0, a = bn = 0 n = 2,3, ... b- = 0 n = O , l , .  .. n n 

Two cases  are discussed, the f i r s t  has a wave of u n i t  amplitude inc ident  

a t  x 4  corresponding t o  the  f i r s t  t ransverse mode (a, = 1.01, and t h e  second 

case considers  a wave of u n i t  amplitude inc ident  a t  xx1.0 corresponding 

t o  the  f i r s t  hydrodynamic mode (bo = 1.0). 

correspondence i n  the i r r o t a t i o n a l  model so the  pr imi t ive  form of the  

equations must be used t o  solve fo r  t h i s  solut ion.  For each of the two 

algorithms e igh t  noded isoparametric elements were used f o r  both the  

pressure and veloci ty .  optimal rates of convergence would then be 2 i n  

1 2 the  H norm and 3 i n  the  L norm. 

Figures 8 and 9 are p l o t s  of t h e  H1 and L2 e r r o r s  

+ 

This lat ter case has no 1 

ve loc i ty  and 

pressure respec t ive ly ,  verses  mesh size f o r  the f i r s t  problem. For t h i s  

problem both algorithms gave (approximately) the  same convergence rates, 

however these rates are not optimal. The rates were one and two f o r  H 1 

2 and L e r r o r s  respec t ive ly .  

Astley ' s algorithm cons i s t en t ly  gave e r r o r s  t h a t  w e r e  smaller than those 

given by Abrahamson's algorithm. The r e s u l t s  f o r  the second problem a re  

shown i n  f igu res  10 and 11. 

s t i l l  gave a t  least the  same rates as f o r  t he  f i r s t  problem while Abraham- 

son 's  algorithm converged slower (in the  pressure) f o r  t h i s  problem, 

demonstrating that Abrahamson's code h a s  convergence rates t h a t  are 

problem dependent. 

This is prec ise ly  one less than optimal. 

These curves show t h a t  As t ley ' s  algorithm 
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I p = 0.5 p = 1.0 

Ux = -0.25 
c - 1  

x-0 xto .5  x=l 

0 = 1.0 
+ 

a. = 1.0 

b' = 0 n 

& P 2  i e  k = 2  
/fie 

+ 
an = o n > O  

v n  = O,l, ... 

Figure 2. Schematic of the uniform duct t e s t  case with 
discontinuous f l o w  Cnon-physical ) .  
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2. Non-Uniform Duct Resul ts  

The problems with convergence reported by Abrahamson [71 were 

encountered with the  non uniform mean flows t h a t  are usual ly  encountered 

with va r i ab le  geometries. 

codes i n  such a s i t u a t i o n  a qua r t i c  half duct  w a s  chosen as a test 

problem. The qua r t i c  duct under considerat ion was  symmetric about the  

th roa t  and had terminations t h a t  w e r e  uniform ducts.  The. throat  t o  

exit area r a t i o  w a s  chosen as 0.5 and the duct length  and termination 

height  were both set t o  1.0. 

Case (a) 

In  order t o  compare the  performance of the 

Three mean flow cases were considered: 

The simplest mean flow was constructed by solving the one 

dimensional nozzle equations t o  y i e ld  an x component of mean 

flow ve loc i ty ,  dens i ty  and speed of sound. 

of ve loc i ty  a t  the  upper w a l l  w a s  chosen so that the  flow 

would be t angen t i a l ,  elsewhere i t  var ied  l i n e a r l y  from zero 

on the  center  l i n e  t o  i t s  maximum value on the  upper w a l l .  

The i n l e t / o u t l e t  Mach. number w a s  chosen t o  be 0.3 yie ld ing  

a Mach. number of 0.86 on the duct c e n t e r l i n e  a t  the th roa t .  

The next mean flow was constructed by modifying the flow 

described i n  p a r t  (a) above to give a boundary layer  a t  

The y component 

Case (b) 

the  throa t .  

ca lcu la ted  according t o  

To create t h e  boundary l aye r  a weight (w) w a s  

where 

Y(x) is the  duct width at x. 
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The modified ve loc i ty  f i e l d  was then the  product of the  

ve loc i ty  f i e l d  given i n  p a r t  (a) and the  weight w. A t  

the  t h r o a t  t h i s  weight gives a s inusoida l  boundary layer .  

The dens i ty  and speed of sound were not  adjusted.  

Case(c)  The t h i r d  mean flow w a s  constructed l i ke  the one i n  (b) above 

except t h a t  a much steeper boundary l aye r  w a s  chosen. A 

one-seventh boundary l aye r  approximation, similar t o  the 

empir ica l  r e l a t i o n  observed i n  p ipes ,  w a s  used. The 

weight (w) chosen t o  y i e l d  such a layer  is given by, 

The  mean flow, f o r  all t h r e e  cases,  w a s  evaluated a t  the nodal 

values of the f i n i t e  elements, and the element i n t e rpo la t ion  funct ions 

w e r e  used t o  determine the flow within an element. 

elements were used f o r  all cases. Case (c) has very s t eep  gradien ts  so the  

element i n t e rpo la t ion  funct ions would not  approximate these grad ien ts  very 

w e l l  on a coarse mesh, however, s ince  t h i s  is t y p i c a l  of w h a t  happens i n  

p r a c t i c e  we  d id  not  make any attempt t o  c o r r e c t  t h i s  problem. The mean 

flow f o r  case (c) has a s i n g u l a r i t y  i n  i t s  de r iva t ives  a t  t h e  t h roa t  so 

the  i n t e g r a l s  defined f o r  the Astley and Abrahamson weak problems may not 

be continuous . 

Eight noded isoparametric 

Since the mean flow va r i e s  rapidly near the th roa t  and a t  the  upper 

wall,meshes were chosen that had a higher dens i ty  of elements i n  these 

regions.  

fo r  the nodal spacing i n  the x d i rec t ion ,  

The meshes were constructed using t h e  following transformation 
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Equal increments of 5 were used t o  y ie ld  nodal x values.  

transformation w a s  used f o r  the nodal spacing across  t h e  duct ,  

The following 

w h e r e  

Y(x) is. the duct width a t  x. 

Again equal  increments of rl were used t o  y i e ld  the nodal y values 

a t  each axial  locat ion.  

always placed in  the  middle. 

duct and 10 elements along t h e  duct (a 5 x 10 g r id )  is shown i n  f i g u r e  12. 

Three meshes, 5 x 10, 10 x 20 and 20 x 40 elements, were u t i l i z e d  f o r  

each of t h e  three cases (a-c) described above. The  frequency (w) w a s  set 

t o  2.0 and the  problem of a plane wave inc ident  a t  x 4  (ai  = 1.0) w a s  

se lec ted .  

very f i n e  s ince  they have many elements per  wave length. 

geometries and frequencies meshes with a s imi l a r  number of elements per 

wave length would probably exceed the c a p a b i l i t i e s  of most computers. 

Along s t r a i g h t  s i d e s  the  midside nodes w e r e  

A t yp ica l  mesh with 5 elements across  t h e  

For t h i s  problem the  meshes described above would be considered 

With real is t ic  

As no exact  so lu t ion  exists f o r  t h e  non uniform duct problem a 

comparison of p l o t s  of pressure amplitude contours i s  made. 

t h a t  if the contours are smooth w h e r e  the mean flow is smooth, and i f  the  

contour p a t t e r n  only changes s l i g h t l y  as the  mesh is r e f i n e d ,  t h e  

so lu t ion  is  converging. when appropriate,  p l o t s  of t h e  pressure 

are presented f o r  comparison of t he  schemes. 

It is  expected 

For t h e  f i n e s t  g r i d ,  
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2 
ca l cu la t ions  were made of t he  L difference 

by the p o t e n t i a l  flow code and the pressure 

algorithms. 

between t h e  pressure given 

given by t h e  other  two 

Figures (13a-c) show the  pressure contours f o r  case (a) given by each 

of t h e  t h r e e  codes.with t h e  2 0 x 4 0  mesh. 

i t  appears as i f  t he  p o t e n t i a l  flow code and Ast ley 's  algorithm are 

converging, however the  p l o t  given by Abrahamson's algorithm is  not  

p a r t i c u l a r l y  smooth and it is d i f f i c u l t  t o  conclude anything. 

conspicuous d i f fe rence  between the  p o t e n t i a l  flow code and the  o ther  

two algorithms is the  apparent rate of convergence (c f .  the  uniform duct 

so lu t ions) .  Figures (14a-c) show the pressure contour p l o t s  fo r  each 

of t he  three algorithms given with t h e  coa r ses t  (5 x 10) mesh. 

Figure (14a) shows tha t  the p o t e n t i a l  flow code contours are qua l i ta -  

t i v e l y  the  same as those f o r  t he  f i n e r  mesh, f i g u r e  (13a), however, t h e  

contours f o r  t h e  o ther  t w o  algorithms show t h e  presence of l a r g e  wiggles 

which almost obscure any pa t t e rn  present. 

Usingthe cri teria discussed above, 

One 

Figures (15a-c) show the pressure contours given by the  three  

algorithms f o r  case (b) on the  f i n e s t  mesh. Case (b) e x h i b i t s  the  

t rends discussed i n  case (a) above and, i f  anything, t o  a greater 

degree. 

and Ast ley 's  algorithm shows a difference i n  the  pressure  near t he  

upper w a l l .  Figures (16a-c) show the  w a l l  pressure p l o t s  corresponding 

t o  the  three  contour p l o t s  given i n  f igures  (15a-c). It is  apparent 

t h a t  the r o t a t i o n a l  codes develop a d i f f e r e n t  pressure p r o f i l e  a t  the  

upper w a l l  near the  throa t .  Another differencebetween the r o t a t i o n a l  

and i r r o t a t i o n a l  codes is the levelof  the so lu t ion .  This is indicated 

Comparing the  contour pa t te rns  given by the  p o t e n t i a l  code 
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q u a l i t a t i v e l y  by t h e  peak pressures  i n  the th roa t  given i n  f igu res  15, 

and q u a n t i t a t i v e l y  by the  L2 norms of the  so lu t ions  given i n  f igu re  17. 

Figure 1 7  contains  the norms of the  so lu t ions  f o r  each of the three  

cases and the  L 

the pressures given by the  r o t a t i o n a l  codes f o r  the f i n e s t  g r id .  

2 di f fe rence  between the p o t e n t i a l  flow pressures  and 

Figures (18a-c) show the pressure contour p l o t s  given by each of 

the  three  codes f o r  case (c) .  

Abrahamson's algorithm almost ce r t a in ly  is not  converging and t h a t  the 

p a t e n t i a l  flow so lu t ion  almost c e r t a i n l y  is. 

Ast ley 's  algorithm are inconclusive and are very similar t o  those of 

AbrahamSon's algorithm f o r  cases (a) and (b). Figure (19a-c) show 

p l o t s  of the pressure along the l i n e s  xa), x4.5 and xp1.0 given by 

each of t h e  algorithms on the f i n e s t  mesh. 

ve loc i ty  p o t e n t i a l  code a t  the t h r o a t  contains a d iscont inui ty .  The 

pressure a t  the th roa t  given by Astley 's  algorithm is similar but i t  

is reminiscent of the pressures shown i n  f i g u r e s  ( 5 )  and (6) where 

continuous pressures w e r e  used t o  model a pressure jump t h a t  w a s  modeled 

much b e t t e r  by the discontinuous elements .  

Abrahamson's code a t  each of t h e  t h r e e  a x i a l  loca t ions  contain tremendous 

wiggles. 

Inspection of these p l o t s  shows t h a t  

The r e s u l t s  given by 

The pressure given by the  

T h e  pressures  given by 

2 Figure 1 7  tabula tes  the L pressure norms given by each algorithm 

2 fo r  cases  (a-c) on each of the  meshes and the L d i f f e rence  between the 

r o t a t i o n a l  and i r r o t a t i o n a l  pressures  with the f i n e s t  mesh. It is 

apparent that the  pressure is cons is ten t ly  larger for the  p o t e n t i a l  flow 

code than the r o t a t i o n a l  flow pressure and i t  appears t h a t  i f  t h e  Abrahamson 

and Astley algorithms converge, the pressure is  similar. The L d i f f e rence  2 
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between the pressures given by the irrotational and rotational  algorithms 

was greatest for case (b) where they differed by about 30%. 

for cases (a) and (b) were approximately 10% and 15% respectively.  

The difference 
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CONCLUSIONS 

A combination of ana lys i s  and numerical experimentation has been 

c a r r i e d  o u t  with t h e  goal  of examining t h e  convergence c h a r a c t e r i s t i c s  

of t h r e e  f i n i t e  element algorithms f o r  t h e  modelling of acous t ic  propaga- 

t i o n  in nonuniform ducts  carrying a mean flow. The f i r s t  model is based 

on the assumption of an i r r o t a t i o n a l  mean flow and i r r o t a t i o n a l  acous t ic  

per turbat ions.  

propagation in turbo-fan engine inlets and the  subsequent r ad ia t ion  t o  

the  f a r  f i e l d .  

t o  permi t  a mean flow which is not  i r r o t a t i o n a l ,  but  which is imposed on 

t h e  i r r o t a t i o n a l  model by en ter ing  it  as da ta  in the  model. 

a t  t h i s  point ,  t h i s  is a non-physical model but  serves t o  broaden the  

scope of t he  inves t iga t ion .  

are acous t ic  ve loc i ty  p o t e n t i a l  and acoust ic  pressure (or dens i ty) .  

This model is cur ren t ly  in use i n  t h e  ca l cu la t ion  of 

In t h e  present study the  physical  c o n s t r a i n t s  are relaxed 

A s  viewed 

I n  t h e  i r r o t a t i o n a l  model t h e  f i e l d  va r i ab le s  

The o the r  two models do not  impose t h e  i r r o t a t i o n a l  assumption. A s  

a consequence they use t h e  pr imi t ive  var iab les ,  pressure and two components 

of ve loc i ty .  

advantage of n a t u r a l  boundary conditions and introduces t h e  idea of 

specifying acous t ic  input ,  r e f l e c t i o n ,  and transmission boundary condi t ions 

i n  terms of modal amplitudes. 

Abrahamson [6,7] and uses  forced boundary conditions.  

One of these models, due t o  Astley and Eversnan [ 3 ] ,  takes  

The second r o t a t i o n a l  model is due t o  

I n  Appendix I it is  shown by ana lys i s  t h a t  under s t a t e d  r e s t r i c t i o n s  

the  ve loc i ty  p o t e n t i a l  formulation w i l l  converge optimally.  

experimentation on both uniform and nonuniform duct models v e r i f i e s  t h e  

ana lys i s .  

in cu r ren t  turbo-fan r ad ia t ion  codes in t h a t  (1) ve loc i ty  p o t e n t i a l  and 

pressure are solved f o r  simultaneously ( a s  opposed t o  solving f o r  p o t e n t i a l  

Numerical 

The s t a t e d  r e s t r i c t i o n s  a re  somewhat d i f f e r e n t  than those used 

60 



and then obtaining pressure by calculat ion)  and (2) t h e  approximation 

f o r  v e l o c i t y  p o t e n t i a l  is sought in  the subspace of continuous func t ions  

while the approximation f o r  pressure is sought in  t h e  subspace of d i s -  

continuous funct ions (as opposed t o  the subspace of continuous funct ions 

f o r  both p o t e n t i a l  and pressure) .  

No ana lys i s  is present ly  ava i lab le  t o  i s o l a t e  t h e  convergence 

characteristics of either of t he  two models based on t h e  pr imi t ive  

var iab les .  Information is derived e n t i r e l y  by numerical experimentation. 

It is found that in  t h e  examples considered optimal convergence is not  

achieved and in some instances lack  of convergence is observed. 

general ,  it appears t h a t  t h e  Astley-Eversman algorithm disp lays  incon- 

c lus ive  convergence characteristics, ce r t a in ly  not  optimal, but not  c l e a r l y  

nonconvergent. 

nonconvergence and t h i s  behavior is c lea r ly  problem dependent. 

I n  

The Abrahamson algorithm is much more l i k e l y  t o  d isp lay  

It was also noted t h a t  t he  po ten t i a l  formulation, with a r o t a t i o n a l  

mean flow forced on it, does not converge t o  the  same r e s u l t  as t h e  f u l l y  

r o t a t i o n a l  models do (when convergence occurs) ,  t he  d i f fe rence  being 

more obvious in  t h e  boundary layer  cases in  which a s t rong shear l aye r  

exists. Furthermore, t he  tendency toward nonconvergence in  t h e  r o t a t i o n a l  

models is exacerbated by a s t rongly  sheared boundary layer .  

convergence occurred i n  t h e  numerical experiments using t h e  1 / 7  power 

boundary layer .  

The poorest  

It is concluded that: 

(1) The p o t e n t i a l  flow model converges with reasonable assurance. 

(2) The r o t a t i o n a l  flow models a re  subjec t  t o  slow convergence or 

nonconvergence. 

Poor convergence o r  nonconvergence is most l i k e l y  t o  occur 

with s t rongly  sheared flows. 

c3) 

61 



BIBLIOGRAPHY 

Tag, I .A.  and Akin, J .E . ,  "F in i te  Element Solution of Sound Propagation 
in  a Variable Area Duct'', AIAA-79-0663, 1979. 

Eversman, W. and Astley,  R. J., "Acoustic Transmission i n  Non-Uniform 
Ducts with Mean Flow, Pa r t  I: The Method of Weighted Residules", 
Journa l  of Sound and Vibration 74(1), p.89-101, 1981. 

Ast ley,  R.J.  and Eversman, W. ,  "Acoustic Transmission i n  Non-Uniform 
Ducts with Mean Flow, P a r t  11: The F i n i t e  Element Method", Journal  of 
Sound and Vibration 74(1), p. 103-121, 1981. 

Baumeister, K.J . ,  "Applications of Velocity P o t e n t i a l  Function t o  
Acoustic Duct Propagation and Radiation from I n l e t s  Using F i n i t e  
Element Theory", AM-79-0680, 1979. 

Baumeister, K. J . ,  "Time Dependent Difference Theory f o r  Sound 
Propagation i n  Axisynnnetric D u c t s  wi th  Plug Flow", AIAA-80-1017, 
1980. 

Abrahamson, A . L . ,  "ADAM - An Axisymetric Duct Aeroacoustic Modeling 
Sys tern", NASA Contractor Report 3668, 1983. 

Abrahamson, A.L. , "A F i n i t e  Element Algorithm f o r  Sound Propagation i n  
Axisymmetric Ducts Containing Compressible Mean Flow," NASA CR-145209, 1977. 

Fix,  G . J . ,  Gunzburger, M.D. and Nicolaides, R.A., "On Mixed F i n i t e  
Element Methods I ,  T h e  Kelvin Principle",  ICASE Report 77-17, 
December 1977. 

Fix,  G . J . ,  Gunzburger, M.D. and Nicolaides, R.A., "On Mixed F i n i t e  
Element Methods 11, The Least Squares Method", ICASE Report 77-18, 
December 1977. 

[ l o ]  Fix,  G . J . ,  Gunzburger, M.D. and Nicolaides, R.A., "On Mixed F i n i t e  
Element Methods 111, The Grid Decomposition Property and Examples", 
ICASE Report 78-7, March 1978. 

[ l l ]  Fix,  G . J . ,  Gunzburger, M.D., "On Numerical Methods fo r  Acoustic 
Problems", ICASE Report 78-15, September 1978. 

[12] Fix,  G . J . ,  Gunzburger, M.D. and Nicolaides, R.A., "On Mixed F i n i t e  
Element Methods f o r  F i r s t  Order E l l i p t i c  Systems", Numerische 
Mathematik, 37, p.29-48, 1981. 

62 



[13] Fix, G.J., Gunzburger, M.D. and Nicolaides, R.A., "On F i n i t e  Element 
Methods of t he  Least Squares Type", Computers and Mathematics with 
Applications,  Volume 6, p.87-98, 1979. 

[ 1 4 ]  Astley,  R.J.  and Eversman, W., "A F i n i t e  Element Formulation of the 
Eigenvalue Problem i n  Lined Ducts with Flow", Journal  of Sound and 
Vibration 65 (1) , p. 61-74 , 1979. 

1 [15] Ciarlet, P.G., "The F i n i t e  Element Method f o r  E l l i p t i c  Problems", 
North Holland, Amsterdam, 1978. 



APPENDIX 



A FINITE ELEMENT APPROXIMATION 
OF THE IRROTATIONAL ACOUSTICS EQUATIONS 

Noel Walkington* and Thomas Wickst 

This work was supported i n  part by NASA Langley under contract NAG-1-198. 

*Department of Mathematics, The University of Texas a t  Austin, Austin, 
TX 78712. 

?Inst i tute  of -Applied Mathematics, University of Missouri-Rolla, Rolla, 
MO 65401. 



ABSTRACT 

We inves t iga t e  a f i n i t e  element approximation of a problem i n  

duc t  acous t i c s  w h e r e  the medium is inviscid,  the motion is  assumed t o  

be i r r o t a t i o n a l  and non-homogeneous boundary conditions are imposed 

which arise from the approximation of an i n f i n i t e  duct wi th  one t h a t  

is  bounded. 

and t h e i r  approximation fo r  which a f i n i t e  element approximation of the 

mixed-hybrid type is well-posed. 

reasonable hypothesis on the  da ta  tha t  the method w i l l  converge 

optimally i f  the  sequence of boundary coe f f i c i en t s  has more than h-l 

m e m b e r s  and the degree of polynomial (k) f o r  the  pressure is  grea te r  

than or  equal  to t h e  degree, k+l, which is  used fo r  the  ve loc i ty  po ten t i a l .  

A study is made of r e s t r i c t i o n s  f o r  t he  boundary condi t ions 

In  pa r t i cu la r  w e  prove t h a t  under a 



1. In t roduct ion  
+ 

The problem of interest is the following: Find ($,p, {ai} ,  {b,}) 

such that 

.iwce2p + v (pv@ + c - 2 ~ p )  .., = o i n  Q (1. l a )  - .., 

(1 . lb)  p-lp + U*V+ - -  + = o i n  Q 

-(pV@ + c - ~ U  p)*N 
.., .., - (1.ld) 

+ 
(1 . le)  = C (an + 

'"1 n=o 

(P + 
(1 . l f )  

a-) cos (nlry/dl) n 

4 2 
Q c IR represents  a duct with boundary aSI = u r. where r 

i=l  
and r2 = {(L,y) :  y e ]0,d2[).  3 
that R s a t i s f i e s  the cone condition. 

= ((0,~): y € ]O,dl[ 1 . 1 1 

In  addi t ion I' and r4 a re  assumed t o  be such 

The var iab les  of i n t e r e s t  p (x ) ,  @(x)  € C - .., 

def ine  the  acous t ic  pressure and ve loc i ty  po ten t i a l ;  U L a - 2  ($2) represents  - 
w -  

the  mean ve loc i ty ;  c ,  p e L (SI) denote t h e  sound speed and gas dens i ty ;  w 

+ =  and {bi} = {b-lo 
+ denotes the  per tubat ion frequency; and {an} = 

n n=O 
represent  incoming waves and are assmed t o  be known. Also, 

where M = I U l / c  and k = w/c represent  the mach number and c h a r a c t e r i s t i c  - 
wavelength respec t ive ly  and M, ' e t c .  denotes i t s  r e s t r i c t i o n  t o  r i=l  or 2. 

i' i 1 

-A-l- 



Equations (1.la-b) are a model for  an i nv i sc id ,  non-heat conducting, 

i d e a l  f l u i d  which is undergoing an i r r o t a t i o n a l ,  " s m a l l " ,  periodic-pertubation 

about a subsonic mean flow (M < 1) i n  a duct.  The boundary condi t ions (1.lc-d) 

def ine  compat ib i l i ty  condi t ions between inc ident  and r e f l e c t e d  waves i n  a 

uniform duct  (cf .  Eversman and Astley [3 ] ) .  

The compressible flow equations have received considerable ,  a t t e n t i o n  

i n  the  literature (e.g. Bris teau e t  al. [ l ] )  and equat ions (1.la-b) represent  

, a l i n e a r i z a t i o n  of these. Also Fix and Nicolaides [4] have s tudied a mixed 

model w i th  Di r i ch le t  boundary conditions f o r  the case when t h e  flow is 

~ 

possibly r o t a t i o n a l  but U = 0 (i.e. a mixed model f o r  Helmholtz's equat ion) .  - -  
I In  p a r t i c u l a r  they have invest igated conditions under which an increased 
I convergence rate holds f o r  the pressure (see a l s o  F i x  e t  a l .  [5 ]  and Fix 

and Gunzburger [ 6 ] ) .  

W e  w i l l  s tudy a f i n i t e  element approximation t o  (1.1) which is 

mixed i n  the sense that ( 4 , ~ )  are approximated independently and hybrid 

+ i n  the sense t h a t  ($,{ai),{bn)) are approximated independently. 

w e  de f ine  a weak problem for  the boundary-value problem and specify a f i n i t e  

element approximation. Then i n  sect ion 3 we prove t h a t  the weak problem is 

In sec t ion  2 

well-posed and i n  sec t ion  4 we prove that the f i n i t e  element approximation 

converges under s u i t a b l e  hypotheses. 

- L 2 -  



2. The F i n i t e  Element Approximation 

W e  f i r s t  def ine  a weak problem which is associated with (1.1) 

and then consider a f i n i t e  element approximation of this problem. 

F i r s t  w e  f i x  some notat ion.  

Let HS (Q) , 'Q) > s - > 0 ,  denote the usual Sobolev space over 
OD 

the  complex f i e l d  and def ine S = { {gn)i4 6 e2CldO)):  2 "[GI2 + lgOl2 < 

where 1 @io)) denotes the space of square-summable .sequences of complex 

numbers. 

Hs(52) and S respec t ive ly .  

H = {g  € H (a ) :  gl 

n- 1 
2 

In  addi t ion  11 - 11 s,n and 1 1  lis w i l l  denote the usual norms fo r  

Also set r,C r4 with meas r5 > 0 ,  let 

1 = 0) and def ine,  
r5 

S(n) = 1 n - 0  I n n e N  

'i 



Remark 2.1. 

which is dependent on the  s p e c i f i c  choice of data .  

The requirement t ha t  4 = 0 on r5 ' is  a technical d e t a i l  

For convenience w e  

w i l l  always include t h i s  condition. 

Remark 2.2. 

by e l imina t ing  the  pressure ,  {a i>  and {b:). 

required by Acousticians f o r  comparisons n i t h  experiments. 

A weak problem with fewer unknown var i ab le s  may be constructed 

However these var iab les  are 

In cons t ruc t ing  the  f i n i t e  element approximation w e  shall need 

the  following standard not ions ( c f .  Ciarlet [ 21). 

family of t r i angu la t ions  of Q w h e r e  h denotes the max imum diameter of t he  

element p a r t i t i o n .  Define 

L e t  Th denote a regular  

IPk(T) = {polynomials of degree 2 k on T I ,  T e Th 

h 2 24;' (Th) = {g  e L (SI) : gl; f + i; where f ,  f e IPk(T) 

- A-4- 



H e r e  C ( Q )  denotes the  complex-valued functions which are continuous. 

Approximation: Find ((jh'ph, ca-7, {b'?) n B Ni(Th) x M:(Th) x SN x SN 

such t h a t ,  

- A  -5- 



2.1 Pre l iminar ies  

s63t II IIo = II Il0,Q and II I11 = II II1,Q. We w i l l  list some 

lemmas and hypotheses t h a t  w i l l  be needed i n  the sequel. F i r s t  t he  

standard Poincare' inequal i ty .  

Lemma 2.1. 

Then the re  e x i s t s  a A > 0 such that 

Suppose Q s a t i s f i e s  the cone condition and meas r5 > 0. 

Lemma 2.2. 

Then f o r  i=1.,2 there  exists a posi t ive constant y(d.)  such that 

L e t  {an) 8 S, $ 8 ff and suppose R s a t i s f i e s  the cone condition. 

1 

Proof. F i r s t  note that by the t r ace  theorem, Lions and Magenes [ 7  1, there  

L A 

i = 1,2 since ri C an. Then because of the de f in i f ion  of B:(*,*) and 

the  Cauchy-Schwarz inequal i ty ,  B ( a  ,$) e x i s t s  and 
i 
n n  



Now by using classical in te rpola t ion  theory fo r  Sobolev spaces ( ~ f .  Lions 

and Magenes [ 7 1) H (Ti) = {g: g € Dom([X-D ] ) )  may be constructed as an + 2 %  

2 1 intermediate  space between L (ri) and { g  € H (ri): Dg(0) = Dg(d.) = 0). Hence 
1 

which leads  t o  the desired estimate a f t e r  we combine inequal i t ies .  

Next w e  cite a standard r e s u l t  of approximation theory ( C f .  

I Ciarlet [ 21).  L e t  I I m , a ,  for m INy denote the usual seminorm on H?(Q). 
I 

Lemma 2.3. 

is a regular  family of t r iangulat ions of Q, there  e x i s t s  a C1, C2 > 0 

(independent of h ,  JI and q )  such that 

Suppose J, € Hk+' (n) k - > 1, and q € p ' ( Q ) ,  m - > 0. Then i f  Th 

i n  f 

W e  now l is t  some reasonable hypotheses t h a t  the known var iab les  

should s a t i s f y .  

Hypothesis 2.1. 
O D -  

{a:), {b,) € s ; c, P € L (Q)  ; W € { g  8 IR: g - > 0); 

O D -  2 and U € L (Q) with 
I 

ess inf c(x)  = co > 0 - 
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Here L"(i2)N, for N = 1 ,2  is  defined on the real  scalars.  

W e  c lose  with a standard approximation result  for sequences. 

F i r s t  w e  define for 4 - > 0 

Lemma 2.4. 

scalar C suah that 

L e t  {a  1 B ?, 4 - > 0. Then for N - > 0 there e x i s t s  a pos i t ive  n 
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3. Existence and Uniqueness of Solutions 

2 W e  note  t h a t  the form on (ff x L (Q) x S x S)2,  which represents  the  

l e f t  hand s i d e  of (2.la-b) and the r igh t  hand s ide  of (2 .1~-d) ,  is sesqu i l inea r  

and the  form on ff x L (Q) x S x S, which represents  the r i g h t  hand s i d e  of 

(2.la-b) and the l e f t  hand s ide  of (2 .1~-d) ,  is a n t i l i n e a r .  Thus to  prove 

2 

t h a t  t he  weak problem has a unique so lu t ion  it  su f f i ces  t o  show that the  

condi t ions  of the  Lax-Milgram theorem are s a t i s f i e d .  

F i r s t  observe that from the ' d e f i n i t i o n  of 6:, along with Hypothesis 

2.1, that 

I A 

= A  + -  - C n(n) (an an + b i  En> 
n=O 

-2 -1 - 
A(u,v) = I [ - h c 2 p T J  + (PO$ 5 + c u 5 p ) .  vij - + p pq 

n 



Lemma 3.1. 

condition. 

Proof. From t h e  d e f i n i t i o n  of F, use of t he  Cauchy-Schwarz inequal i ty ,  

Hypothesis 2.1, 3.1 , and Lemma 2.2 w e  have t h a t  

Suppose Hypothesis 2.1 holds and fi s a t i s f i e s  t h e  cone 

Then F e U’ and A is a continuous sesqui l inear  form on u x u. 

thus 

hence F € u’. Now i f  w e  perform similar operat ions on A ( - , - )  

A i=l, 2 I 

which completes the  proof. 

A i = l , 2  

Theorem 3.1. 

Then i f  t he re  exists a pos i t i ve  number such t h a t  

Suppose Hypothesis 2.1 holds and Q s a t i s f i e s  the cone condition. 

+ 
there  e x i s t s  a unique u 6 U sa t i s fy ing  (2.1) with 

+ ll{bil Ils) !where C > 0. 

1 1  u [ I u  - < C (II{an> lis  
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Proof. 

on U x U. Using Leumas 2.1 and 2.2, Hypothesis 2.1  and the  Cauchy-Schwarz 

inequal i ty ,  

Lemma 3.1 holds therefore  we need only prove that A is coercive - 

and by applying the  arithmetic-geometric m e a n  inequal i ty  t o  the  last  two 
A A 

terms w e  have with C 

and C3 = 1 - C1/4c:  

= p0A/(1 + A) - S2e - 2E1c, C2 = l/pl - 52/4E: 1 

A 

Now E: > 0 may be chosen so that 

2 2 %  c1 = c2 = POA/(l + A )  - [c, + (C4 + E 2 )  1 / 2  - 2E1€ 

where C4 = p o A / ( l  + A )  - l / p l  - 2E1c. 

manipulation) C 

theorem holds therefore  completing the proof. 

Thus by hypothesis ( a f t e r  some 

Cg > 0 .  Hence A is  coercive on U x U and the Lax-Milgram 1' 

Theorem 3.1 may also be extended to apply t o  the approximation. 

F i r s t  note tha t  NL(Th) with 11 Illand Mil(Th) 'with 11 I l o  are closed sub- 

spaces of H and L (Q). 

def in ing  gn = 0 

Thus by repea t ing  the proof fo r  the f i n i t e  dimensional case w e  have: 

Theorem 3.2. Suppose the  hypothesis of Theorem 3.1 holds. Then there  exist 

a unique yn = (@,,ph,Ian },{b:Nl) 8 Uh =lMl(Th> xNi l (Th)  x S, x S, satis- 

fying (2 -2 )  with 11 u h u -  11 < C (II{a+ n I l lS + ll{bi )IIS 1. 

2 N N 

v n > N then SN w i t h  11 11, is  a closed subspace of S. 

Furthermore i f  we extend {gn> e S, t o  € S by 

N 

- N  
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4. Convergence of t he  Approximation 

W e  now prove convergence of the approximation (2.2) t o  the so lu t ion  

of (2.1) under an hypothesis t h a t  the so lu t ion  and the d a t a  is "regular". 

N N  Se t  v h = ($,,qh,{an),{B,)) 8 uh and def ine 

N A  - C n(n) (a+ GN + bd n n  n-0 

-2 -1 - 
%(Uh'Vh) = 1 - L c  PhTh + + c-2u - p). VJI - + p phqh 

R 

Theorem 4.1. 

family of t r i angu la t ions ,  l~ 1, m > 0, tr > 0 ,  u and u 

and (2.2) with u 8 (/fn €I'+'(R)) x Hw1(R) x s"- x s"- and {a+},{bi} n € 9. 
Then the re  exists a pos i t i ve  constant C such t h a t ,  

Suppose the  hypothesis of Theorem 3.1 holds,  T is a regular  h 

are so lu t ions  to  (2.1) h - 

- A-12- 



Then A(e,e) = A(e,u-v ) + A(e,vh-\) d vh 8 Uh Uh' h Proof. L e t  e = u - 
since A is sesqui l inear .  

(and U 

A(\,vh). Thus 

But A is continuous and coercive on u x u 
x U ); u and uh are so lu t ions  to  (2.1) and (2.2); and %(\,vh) = 

h h  

11 u - Uh llu I c C l l  u - V h  llu + (F(uh-Vh) - N h  (u - vh>l/l l  - Uh llul 

Now 

Therefore by using (3.11, noting t h a t  

and i = 1,2  

{gn> e S' 

and applying Lemma 2 

IF(vh) - FN(Vh) 

2 w e  g e t  t h a t  

W e  ob ta in  the  des i red  r e s u l t  af ter  choosing cv so t h a t  Lemmas 2 .3  and 2.4 

hold. 

h 

A s  might be expected w e  may not approximate (2.1) with a r b i t r a r y  

va lues  f o r  1, m and N without possibly s a c r i f i c i n g  accuracy. 

choice may be r ea l i zed  by observation of t he  estimate 11 u - uh [Iu. 
Corol lary 4.1. 

A jud ic ious  

Suppose t h a t  m - > 1-1 and N 2 h-lih. Then 
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Remark 4.1. 

terms must be included in the approximation depending on the regularity 

Corollary 4.1 allows one to determine how many boundary 

of the boundary data. 

implying that N 2 (l/h). 

In many acoustics problems we find that N = 1 
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4.1 Numerical Example 

W e  consider a problem which is not e x p l i c i t l y  covered by our theory 

but  never the less  can be analyzed i n  a similar manner. 

0 < x < 1, 0 < y < 0 . 5 } ,  c(x,y) = 1. d (x,y) € 3  and def ine for  0 - -  < y < 0.5 

L e t  52 = {(x,y):  

Also let  e def ine a uni t  vector in the  x-direction, set 
-.X 

f 

+ + = 1. , a = 0. n - > 1 b i  = 0 v n - > 0 and append t o  (1.1) n 
A 

’ a. w = 1. 

the  following jump condition fo r  x = 0.5 , 0 < y < 0.5. 

€ * O  

E * o  

I W e  then have a classkcal problem which has as  a solut ion fo r  $ y  { a i >  and {b:): 

4 /3  k)  + a i  exp (4/5 &), 0 < x < 0.5 

(- 2 , L . [ X - ~ ] ) ~  0.5 < x < 1. 

- 
- 0  V n E m  2 0.161 - 0.219 i ; an 

- 
aO 

1 
I 
I b i  z -0.1276 - 1.3272 i ; bn + = O  v n € N  

t 
1 T5e pressme m y  be c a l c d a r e d  using (1- lb)  and the jump condition. 

I 
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Remark 4.3. This so lu t ion  does not s a t i s f y  the hypothesis of Theorem 4.1. 

However t h e  same convergence rates w i l l  hold f o r  our approximation as long 

as the  graph ((0.5,~): 0 - -  < y < 0.5) does not  i n t e r s e c t  t he  i n t e r i o r  of any 

element i n  Th. 

i n t e r p o l a t i n g  funct ions f o r , t h e  approximation. 

Otherwise, as is' w e l l  known, w e  would have t o  use discontinuous 

Three numerical experiments w e r e  performed using uniform rectangular  
I 

I elements. W e  denote a uniform gr id  with I elements i n  the x d i r e c t i o n  and 

J elements i n  the y d i rec t ion  as a "J x I grid". 

The th ree  cases  w e  consider are: 

(1) ($h,ph) e 9 x q1 with 5 x 10, 10 x 20 and 20 x 40 grids .  
b 

(2) ($h,ph) 8 B$ x 5 ' w i t h  5 x l a ,  10 x 21 and 20 x 41 grids .  

(3) ( $ ~ ~ , p ~ )  e 3 x B$ with 5 x 10, 10 x 20 and 20 x 40 grids .  

The e r r o r  i n  pressure is tabulated i n  Table 1 f o r  each of the 

experiments. 

w h i l e  t he  o ther  two experiments d id  not ( r a t e  2 1) a s  expected. 

Experiment 1 yielded the des i red  convergence rate (rate 2 2) 
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